Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy Using Model-Free Reinforcement Learning

نویسندگان

  • Frederik Ruelens
  • Sandro Iacovella
  • Bert Claessens
  • Ronnie Belmans
چکیده

The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g., when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. The first challenge is that for most residential buildings, a description of the thermal characteristics of the building is unavailable and challenging to obtain. The second challenge is that the relevant information on the state, i.e., the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4%–9% during 100 winter days and by 9%–11% during 80 summer days compared to the conventional constant set-point strategy. Energies 2015, 8 8301

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A learning agent for heat-pump thermostat control

Heating, Ventilation and Air Conditioning (HVAC) systems are one of the biggest energy consumers around the world. With the efforts of moving to sustainable energy consumption, heat-pump based HVAC systems have gained popularity due to their high efficiency and due to the fact that they are powered by electricity rather than by gas or oil. One drawback of heat-pump systems is that their efficie...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

Outsourcing or Insourcing of Transportation System Evaluation Using Intelligent Agents Approach

Nowadays, outsourcing is viewed as a trade strategy and organizations tend to adopt new strategies to achieve competitive advantages in the current world of business. focusing on main copmpetencies, and transferring most of activities to outside resources of organization( outsourcing) is one such strategy is. In this paper, we aim to decide on decision maker agent of transportation system, by a...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1506.01054  شماره 

صفحات  -

تاریخ انتشار 2015